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All course content 
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here, except for 
lecture videos.

https://cs103.stanford.edu/


  

Prerequisite / Corequisite

CS106B
Some problem sets will have small 
coding components. We’ll also 
reference some concepts from 
CS106B, particularly recursion, 

throughout the quarter.

There aren't any math 
prerequisites for this course. 
High-school algebra should 

be enough!



  

Another Option

CS154
CS154 is more appropriate if you 
have a background in the topics 

from the first half of this quarter 
(set theory, proofwriting, discrete 
math, formal logic, graphs, etc.) 
Come talk to me after class if 

you’re curious about this!



  

CS103 ACE
● CS103 ACE is an optional, one-

unit companion course to CS103.
● CS103 ACE meets Thursdays, 

1:30PM – 3:20PM and provides 
additional practice with the course 
material in a small group setting.

● This Thursday’s class meeting is an 
“office hours”-style session where 
you can stop by to meet Evelyn and 
learn more about the course.

● Interested? Apply online at 
this link.

Evelyn Yee
(ACE Instructor)

https://forms.gle/ayGGXCsXrh1tgaVp9


  

Problem Set 0
● Problem Set 0, goes out today. It’s due 

Friday at 1:00PM Pacific.
● Set up your development environment.
● Familiarize yourself with GradeScope and 

EdStem.
● There’s no coding or math involved.

● Start early in case you encounter any 
technical issues.
● There will be a Qt Creator install help session 

this Thursday, 7PM – 9PM in CoDa B45.



  

Recommended Reading



  

Grading

Assignments
Midterm 1
Midterm 2
Final Exam
Participation



  

Approaching this Course
● This course will teach you to think and reason in an 

entirely new way. This takes time and practice.
● Our recommendations:

● Be present. Come to class each day instead of batching 
lectures up. Take notes by hand: lots of what we cover in 
lecture isn’t in the slides.

● Be proactive. Start problem sets early; this is the #1 piece of 
advice CS103 veterans have for future students!

● Be curious. Don’t accept a shaky understanding of a concept. 
Ask questions when something doesn’t click.

● Be humble. Some of your intuitions will be spot-on. Some will 
be entirely off. Some things that seem trivial are incredibly 
important, and vice-versa. Be open to feedback.

● We are here to help you learn this material. Let us know 
how we can help you!



  

We've got a big journey ahead of us.

Let's get started!



  

Introduction to Set Theory



  

“The chemical elements”

“Cute animals”

“Cool people”

“US coins”

“CS103 students”



  

A set is an unordered collection of distinct 
objects, which may be anything, including 

other sets.



  

, , ,
Set notation: Curly braces 
with commas separating out 

the elements

A set is an unordered collection of distinct 
objects, which may be anything, including other 

sets.



  

Two sets are equal when they have the same 
contents, ignoring order.

, ,, , =

These are two 
descriptions of the 

same set.



  

Sets cannot contain duplicate elements.
Any repeated elements are ignored.

, ,
, , ,
, ,

=

These are two 
descriptions of the 

same set.



  

, , ,∈

The objects that make up a set are called the 
elements of that set.

This symbol means “is 
an element of.”



  

, , ,∉

The objects that make up a set are called the 
elements of that set.

This symbol means “is 
not an element of.”



  
Sets can contain any number of elements.

Set

=

The empty set 
is the set with 
no elements.

We denote the 
empty set using 

this symbol.

Ø



  

1 1≠

Question: Are these objects equal?

{1}

1
1

This is a 
number.

This is a set.
It contains a 

number.



  

Ø Ø≠

Question: Are these objects equal?

Ø {Ø}

Ø
This is the 
empty set.

This is a set 
with the empty 

set in it.



  

x x≠

No object x is equal to the set containing x.

{x}

This is x 
itself.

This is a box 
that has x 
inside it.

x
x



  

Infinite Sets
● Some sets contain infinitely many elements!
● The set ℕ = { 0, 1, 2, 3, …} is the set of all the 

natural numbers.
● Some mathematicians don't include zero; in this 

class, assume that 0 is a natural number.
● The set ℤ = { …, -2, -1, 0, 1, 2, … } is the set of 

all the integers.
● Z is from German “Zahlen.”

● The set ℝ is the set of all real numbers.
● e ∈ ℝ, and 4 ∈ ℝ, and -137 ∈ ℝ,



  

Describing Complex Sets
● Here are some English descriptions of 

infinite sets:
“The set of all even natural numbers.”
“The set of all real numbers less than 137.”
“The set of all Python programs.”

● To describe complex sets like these 
mathematically, we'll use set-builder 
notation.



  

{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural 
number

and n is even

Even Natural Numbers

where

{ 0, 2, 4, 6, 8, 10, 12, 14, 16, … }



  

Set Builder Notation
● A set may be specified in set-builder 

notation:
{ x | some property x satisfies }

{ x ∈ S | some property x satisfies }
● For example:

{ n | n ∈ ℕ and n is even }
{ C | C is a set of US coins }
{ r ∈ ℝ | r < 3 }
{ n ∈ ℕ | n < 3 }  (the set {0, 1, 2})



  

Combining Sets



  

Venn Diagrams

A B

A ∪ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Union

{ 1, 2, 3, 4, 5 }



  

Venn Diagrams

A B

A ∩ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Intersection

{ 3 }



  

Venn Diagrams

A B

A – B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



  

Venn Diagrams

A B

A \ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



  

Venn Diagrams

A B

A Δ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Symmetric
Difference

{ 1, 2, 4, 5 }



  

Venn Diagrams

A B

A Δ B



  

Subsets and Power Sets



  

Subsets
● A set S is called a subset of a set T 

(denoted S ⊆ T) when all elements of S 
are also elements of T.

● Examples:
● { 1, 2, 3 } ⊆ { 1, 2, 3, 4 }
● { b, c } ⊆ { a, b, c, d }
● { H, He, Li } ⊆ { H, He, Li }
● ℕ ⊆ ℤ   (every natural number is an integer)
● ℤ ⊆ ℝ   (every integer is a real number)



  

Subsets and Elements

{2}
2

Set S

∈ S{2}
General intuition: 
x ∈ S means you 
can point at x 
inside of S.



  

Subsets and Elements

{2}
2

Set S

⊆ S{  }2
General intuition: 
A ⊆ B if you can 

form A by circling 
elements of B.



  2

Subsets and Elements

{2}
2

Set S

⊆ S
(Since 2 

isn't a set.)



  

Subsets and Elements

{2}
2

Set S

Ø  ⊆  S



  

Subsets and Elements

{2}
2

Set S

Ø  ∉  S



  

Subsets and Elements
● We say that S ∈ T when, among the elements of T, 

one of them is exactly the object S.
● We say that S ⊆ T when S is a set and every 

element of S is also an element of T. (S has to be a 
set for the statement S ⊆ T to be true.)

● Although these concepts are similar, they are not 
the same! Not all elements of a set are subsets of 
that set and vice-versa.

● We have a resource on the course website, the 
Guide to Elements and Subsets, that explores this 
in more depth.



  

,,,,

,S = 

℘(S) = 

This is the power set of S, the set of 
all subsets of S. We write the power 

set of S as (℘ S).
 

Formally, (℘ S) = { T | T ⊆ S }.
(Do you see why?)

Ø



  

What is (Ø)?℘

Answer: {Ø}

Remember that Ø ≠ {Ø}!



  

Cardinality



  

Cardinality
● The cardinality of a set is the number of 

elements it contains.
● If S is a set, we denote its cardinality as |S|.
● Examples:

● |{whimsy, mirth}| = 2
● |{{a, b}, {c, d, e, f, g}, {h}}| = 3
● |{1, 2, 3, 3, 3, 3, 3}| = 3
● |{ n ∈ ℕ | n < 4 }| = |{0, 1, 2, 3}| = 4
● | Ø | = 0
● | {Ø} | = 1



  

The Cardinality of ℕ
● What is |ℕ|?

● There are infinitely many natural numbers.
● |ℕ| can't be a natural number, since it's 

infinitely large.
● We need to introduce a new term.
● Let's define ₀ℵ  = |ℕ|.

● ₀ ℵ is pronounced “aleph-zero,” “aleph-
nought,” or “aleph-null.”

● Question: Why don’t we say |ℕ| = ∞?



  

Astonishing Fact: Not all infinite sets 
have the same cardinality. Some infinite 

sets are bigger than others!

More Astonishing Fact: This has 
practical consequences!



  

What does it mean for one set to
be “bigger” than another?



  

How Big Are These Sets?

, , ,

, ,,



  

Comparing Cardinalities
● If S and T are sets, we say that |S| = |T| 

when there is a way of pairing off the 
elements of S and T without leaving 
anything uncovered.

, , ,
, ,,



  

● If S and T are sets, we say |S| < |T| when, 
no matter how you pair off the elements 
of S and T, there’s always at least one 
element of T left uncovered.

Comparing Cardinalities

, ,
, ,,



  

Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

... -3 -2 -1

ℕ

ℤ 0 1 2 3 4 5 6 7 8 ...
One set is smaller than another 
when every way of pairing the 

sets off leaves an element of the 
second set uncovered.

 

Two sets have the same size 
when there is a way to pair their 
elements off without leaving any 

elements uncovered



  

Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.

|ℕ| = |ℤ| = ℵ0



  

A Beautiful Result: Cantor’s Theorem



  

Cantor’s Theorem: If S is a set, then |S| < | (℘ S)|.

Stated differently: no matter how you pair off the 
elements of a set S with the subsets of S, there is 

always some subset of S left uncovered.



  

x₀

x₁

x₂

x₃

x₄

x₅

… …

x₀ x₂ x₄ …, , ,

x₃ x₅ …, ,

x₀ x₁ x₂ x₅ …,,,,

x₁ x₄ …, ,

…x₂,

x₀ x₅ …x₄, , ,



  

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

x₀

x₁

x₂

x₃

x₄

x₅

…



  

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

x₀ x₂ x₅ …, , ,

Which element is 
paired with this 

set?

x₀

x₁

x₂

x₃

x₄

x₅

…



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

“Flip” this set. 
Swap what’s 
included and 

what’s excluded.

…x₁ x₃ x₄, , ,

x₀

x₁

x₂

x₃

x₄

x₅

…



  
…x₁ x₃ x₄, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element is 
paired with this 

set?

x₀

x₁

x₂

x₃

x₄

x₅

…

x₀



  

…And Beyond!
● By Cantor's Theorem:

|ℕ| < | (ℕ)|℘
| (ℕ)| < | ( (ℕ))|℘ ℘ ℘

| ( (ℕ))| < | ( ( (ℕ)))|℘ ℘ ℘ ℘ ℘
| ( ( (ℕ)))| < | ( ( ( (ℕ))))|℘ ℘ ℘ ℘ ℘ ℘ ℘

…     
● Not all infinite sets have the same size!
● There is no biggest infinity!
● There are infinitely many infinities!



  

How does this have any
practical consequences?

What does this have to do
with computation?



  

“The set of all computer programs”

“The set of all problems to solve”



  

Every computer program is a string.

So, the number of programs is at most the 
number of strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems as
there are sets of strings (see appendix!).

|Programs|    |Strings| | (Strings)|℘ |Problems| ≤ ≤    <



  

|Programs| < |Problems|

There are more problems to
solve than there are programs

to solve them.



  

It Gets Worse
● Using more advanced set theory, we can 

show that there are infinitely more 
problems than solutions.

● In fact, if you pick a totally random 
problem, the probability that you can 
solve it is zero.

● More troubling fact: We've just shown 
that some problems are impossible to 
solve with computers, but we don't know 
which problems those are!



  

We need to develop a more nuanced 
understanding of computation.



  

Where We're Going
● What makes a problem impossible to solve 

with computers?
● Is there a deep reason why certain problems can't be 

solved with computers, or is it completely arbitrary?
● How do you know when you're looking at an 

impossible problem?
● Are these real-world problems, or are they highly 

contrived?
● How do we know that we're right?

● How can we back up our pictures with rigorous 
proofs?

● How do we build a mathematical framework for 
studying computation?



  

Next Time
● Mathematical Proof

● What is a mathematical proof?
● How can we prove things with certainty?



  

Appendix: Stringy Thingies



  

Strings and Programs
● The source code of a computer program is just a 

(long, structured, well-commented) string of text.
● All programs are strings, but not all strings are 

necessarily programs.

All possible
programs

All possible
strings

|Programs| ≤ |Strings|



  

Strings and Problems
● There is a connection between the number 

of sets of strings and the number of 
problems to solve.

● Let S be any set of strings. This set S gives 
rise to a problem to solve:
Given a string w, determine whether w ∈ S.



  

Strings and Problems
Given a string w, determine whether w ∈ S.

● Suppose that S is the set
S = { "a", "b", "c", …, "z" }

● From this set S, we get this problem:
Given a string w, determine whether

w is a single lower-case English letter.



  

Strings and Problems
Given a string w, determine whether w ∈ S.

● Suppose that S is the set
S = { "0", "1", "2", …, "9", "10", "11", ... }

● From this set S, we get this problem:
Given a string w, determine whether

w represents a natural number.



  

Strings and Problems
Given a string w, determine whether w ∈ S.

● Suppose that S is the set
S = { p | p is a legal C++ program }

● From this set S, we get this problem:
Given a string w, determine whether

w is a legal C++ program.



  

Strings and Problems
● Every set of strings gives rise to a unique 

problem to solve.
● Other problems exist as well.

Problems
formed from

sets of strings

All possible
problems

| (Strings)| ≤ |Problems|℘
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